Solving the Schrödinger eigenvalue problem by the imaginary time propagation technique using splitting methods with complex coefficients.
نویسندگان
چکیده
The Schrödinger eigenvalue problem is solved with the imaginary time propagation technique. The separability of the Hamiltonian makes the problem suitable for the application of splitting methods. High order fractional time steps of order greater than two necessarily have negative steps and cannot be used for this class of diffusive problems. However, there exist methods which use fractional complex time steps with positive real parts which can be used with only a moderate increase in the computational cost. We analyze the performance of this class of schemes and propose new methods which outperform the existing ones in most cases. On the other hand, if the gradient of the potential is available, methods up to fourth order with real and positive coefficients exist. We also explore this case and propose new methods as well as sixth-order methods with complex coefficients. In particular, highly optimized sixth-order schemes for near integrable systems using positive real part complex coefficients with and without modified potentials are presented. A time-stepping variable order algorithm is proposed and numerical results show the enhanced efficiency of the new methods.
منابع مشابه
Any order imaginary time propagation method for solving the Schrödinger equation
The eigenvalue-function pair of the 3D Schrödinger equation can be efficiently computed by use of high order, imaginary time propagators. Due to the diffusion character of the kinetic energy operator in imaginary time, algorithms developed so far are at most fourth-order. In this work, we show that for a grid based algorithm, imaginary time propagation of any even order can be devised on the ba...
متن کاملEigenvalue Assignment Of Discrete-Time Linear Systems With State And Input Time-Delays
Time-delays are important components of many dynamical systems that describe coupling or interconnection between dynamics, propagation or transport phenomena, and heredity and competition in population dynamics. The stabilization with time delay in observation or control represents difficult mathematical challenges in the control of distributed parameter systems. It is well-known that the stabi...
متن کاملA Local Strong form Meshless Method for Solving 2D time-Dependent Schrödinger Equations
This paper deals with the numerical solutions of the 2D time dependent Schr¨odinger equations by using a local strong form meshless method. The time variable is discretized by a finite difference scheme. Then, in the resultant elliptic type PDEs, special variable is discretized with a local radial basis function (RBF) methods for which the PDE operator is also imposed in the local matrices. Des...
متن کاملO ct 1 99 9 Complex Eigenvalues of the Parabolic Potential Barrier and Gel ’ fand
The paper deals with the one-dimensional parabolic potential barrier V (x) = V0 −mγ2x2/2, as a model of an unstable system in quantum mechanics. The timeindependent Schrödinger equation for this model is set up as the eigenvalue problem in Gel’fand triplet and its exact solutions are expressed by generalized eigenfunctions belonging to complex energy eigenvalues V0 ∓ iΓn whose imaginary parts a...
متن کاملShort-time-evolved wave functions for solving quantum many-body problems
The exact ground state of a strongly interacting quantum many-body system can be obtained by evolving a trial state with finite overlap with the ground state to infinite imaginary time. In many cases, since the convergence is exponential, the system converges essentially to the exact ground state in a relatively short time. Thus a short-time evolved wave function can be an excellent approximati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 139 12 شماره
صفحات -
تاریخ انتشار 2013